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1. INTRODUCTION

In this paper the electromagnetic fields are calculated for a basic
source-model in which an unspecified charge—separation process results in the
linear build-up of charge at a fixed point, while an equal but opposite charge
flows away from the point with constant velocity in a straight line. This
model might spply to the case of a free-space ion-gun, which when suddenly
switched on, produces a beam of current while charge builds up on the gun.

The model assumes a current in the form of a step-function thus providing the

basis for treating more coamplicated current variations by linear superposition

methods. For example, the fields from the time-varying current wave which is

excited by a corona discharge at the end of a long straight conductor aight be
syanthesized in this way.

Whereas some aspects of a similar but less general probleam have already
been treated,l the present work develops the complete solution for arbitrary
observation distances, directions and times. In addition Sections 6, 7, and 8
congider the fields caused by generating the current at one point, and stop-
ping (absorbing) it at snother. This process creates a charge dipole of
finite length and varying moment.

2. RETARDED POTENTIALS FOR THE CURRENT-GENERATION

Pigure 2.1 illustrates a cylindrical coordinate system in which the
observation point P has the coordinates r, 2, ¢, the ¢p—direction being into
the plane of the figure. The charge separation process is localized at the
origin 0, and starts at time t = 0. This process feeds charge at a constant !
rate into the line represented by the positive Z-axis, and the charge moves at ;
constant velocity v in the form of an advancing step—function of charge den-
sity pcoul/m. The moving charge is equivalent to a current behind the fromt.

J=vp (2.1)
An equal but opposite charge

q = =Jt (2.2)
builds up at the origin and rcuini there.

With all charges and currents confined to one dimsnsion (Z-sxis) the
volume integrals of the general expressions for the retarded potentials2
reduce immediately to single integrals. Also because of symmetry with respect
to ¢, there is only one component of the magnetic vector potential X, namely

v, [ Iz,

A (r,z3t) - 2 dz, (MKS)
1 (2.3)
Here .
R - ‘I(z-zl)z + 12 (2.4)

1 Lewis, B.A., "Redistion from Idealized Shock Excitation Currests in a
Straight Conductor Rising from a Perfect Rarth st sm Arditrary Angle’®
W Acadenic Press, 1958, p3iS.

2 geratton, J.A. Rlgctromsgnetic Theory, McGraw-Hill, 1941.
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Coordinates in the Plane Containing the Line-Charge and the
Observation Point, P
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R= W22 + o2 | (2.5)

and the current J at point P is to be evaluated at the “retarded time”

T=st - Rllc
(2.6)

In the integrand, J is :c'ro for t less than R/c, and so also is A,

The retarded time T is the time a wavelet travelling with free-space velocity
¢, would have to leave the element of integration dz, at z = 2], in order to
arrive at point P at time t. At the moment when the front edge of the step-
function has reached the point z = zf, a time z¢/V has already elapsed. The
first contribution from the element at z¢ does not reach the observer at P
until after a further time-interval R¢/c where

2
Rf - J(z-zf)z + ”2 = 4;2 - Zzzf + zg

(2.7)

see Figure 2.1. Thus the arrival time of the first wavelet from the element
at 2¢ 1is

2 1 2 2
t - +c 4(:-:9 +r (2.8)

This "time-distance” equation can be solved to give z¢ as a closed-form func-
tion of r, 2, and t, see Appendix A. The resulting expression is rather
cumbersome, and it happens that the inversion process can often be avoided,
especially in mumerical work. The main features of the solution may be under—
stood by noting in Figure 2.1 that if B> z¢,

Rf =R~ z, cosd

2.9)

and

cosb

o I
n|"r'

(2.10)
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that is

2, » :g: - R/cez
- B cos (2.11)

where 8 = b/c. If B=xl and if O=0°, the denominator is small, and Zf can
be correspondingly large.

With the same notation, the scalar potential, see Stratton,z is
o

1 D(:l.f) E .
¥(r,zit) = m:f X dzl (t > R/c) (2.12)

-0b

For convenience this integral will be considered to have two parts:

¢ = ¢-+0‘ » (2.13)

vhere ¢, is due to the moving charge, and &3 is due to the time-varying, but
stationary charge at the origin. Then

[
1 p(z,37)
Wtwmeg ) TR -
n e 1 : (2.14)
°+ .

where the lower bound of integration excludes the origin. The integration
over the stationary charge at the origin is a degenerate one, giving immedi-
ately

1
Y% "7 1@

- o o (t-R/c)

. A‘BGOR (2.15)
on using Equation 2.2.

For a given set of values (r, z, t) there is no contribution to the
integrals for A; and ¢ from those elements for which zl > zg and there is
never any contribution from elements with negative values of z. Also, within
the range 0<21<z¢, p and J are constant, so that .

uwJ

A (oz5t) = T";r- 1 (2.16)




and
J

¢ (r,25t) =g 1
w’ 4we,v (2.17)
\;here
1= f
#(z-z )y + r (2.18)
On setting

E=z2-2 (2.19)

I= —dg_

2%z, 4-527 (2.20)
- [ale+ ¥&2)|

z-2,
£
as may be verified by differentiation. Thus,

I= !.n(z + z2 + 1'2)- R.n(z -z, + 4 (z-zf) +T ) (2.22)

This provides the formal solution for the retarded potentials in exact closed
form. The next section discusses the derivation of the fields from the
potentials ~ a procedure in which it must be remembered that z¢ contains r, z,
and t through the time-distance equation (Equation 2.8).

(2.21)

3. EXACT FIELDS FOR THE CURRENT-GENERATION

The electric and magnetic fields are to be obtained from the potentials
by means of the standard vector operators:

- -0 - 34
B v ot (3.1)
Hetmm
uo
(3.2)
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In cylindrical coordinates with the present axial symmetry "(no dependance on
¢ ) there are only three basic field components:

[N N l 2
9 H, = -——==
! (ORI =
‘§ (3.3)
(St
YR . .- 20 _ 3Az
- z 2 ot
e (3.4)
N
b B~ % (3.5)
: E Each of the above electric field components can be regarded as being the sum
of contributions from the moving and stationary charges. Denoting these be
hid subscripts m and s respectively,
._(qt,'

¥ E =E + E
& z zn zs (3.6)
A
¥
3

+E

2 Be ™ Frn ¥ Fes (3.7)

7

(ALK

Remembering that $ also has two parts, see Equation 2.13, it is evident from

"-’;' Equation 3.4 that
U
S 1) A
P 2 4 .
o L PR T .8
"‘l‘
% and
',;,‘_.._ 30'
f B ™" "9 ' (3.9)
3%,
A
)
1 Similarly, from Equation 3.5,
) .
5%
bt ”m |
[ !n i T (3.10)
&
> ] |
'. Eg " Tor : (3.11)
)
. 6
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Since by Equation 2.15,
® Jt J

LI + »
s 41!503 lmgoc

9, 3% x__xn 3R

¢ wmwee S ————— g m— y J

9z 3—R 9z 4n EORZ z

and
Pr "R " or lmonz ar
On differentiating Equation 2.5, and referring to Figure 2.1,

%-%-cose

-g%-%-sine

Then
Jt cosd
g B e crmee , ——— . (t > R/C)
zs lmeo R2
and
Jt sind
e " "me, "2 - (t >'R/c)

Referring to Equations 2.16 and 2,17, Equation 3.8 gives

1 (a a1
Eu"Zn—s}?(az+“%v 3:) ’

while by Equation 3.10,

J ol

r
T Am-:ov

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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Similarly, Equation 3.3 becomes

B ---i . oI '
') T o _ (3.20)

Q 1
On writin - g — B a—
g B=v/c, and Z_ J . " »

-d
ncb zo B1:1||
(3.21)

It remains to develop expressions for the partial derivatives of I. Noting
from Figure 2.1 that

; - 2

% cosBe (3.22)
and

b 4

= = ginb

R, £ . (3.23)

differentiating Equation 2.22 with respect to r gives

oz

. £
. ) azf . -(z-zf) .~ +r
or
2 2
% - z2 + rz - J(z-zf) +r
z + z2 + rz zZ -z -l-J(z-zf)2 + rz
9z ' azf
) 81n6 . z + ¢:tuef — - sinef
R(14cos8) Rf(l-h:osef)
3108 s1a0 1 % (3.24)

" R(T+cosd) ~ R (TFcosdyy R,

”
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it
N Similarily,
jtf 3:£
o - e B e T
iy at
:} {(z-z )2 + 1.'2
<3 f
’ ot z2 -z + J(z-zf)z + rz
<
¥,
;z‘ : ) 1+ ¢:osef azf
f'.% Rf(l +cosef) at
4 oL 2% (3.25)
‘l:‘ Rf at ¢
': Also
; azf
-g 3zf (z-zf) 1l - Ty
N 1+ —2 -5+ —
) 3 2 +x? Viamz)? + 1
. oz
' z -I-Jz2 + tz (z-zf) + J(z-zf)2 + rz
.‘ -
"y '
o : 9z
A 1 1 4
, -i-kf (1- 3:) (3.26)
,3 On differentiating the time-distance equation (Equation 28) with respect to r,
::j ( B:f) |
X 0122 1 CEI\- )4 |
. v or c 2 2
v J(z-zf) +r |
55: |
:§ . 1 azf ) c:osef azf . au:l.uef ;
ey v or c ar c
o wvhence
3 _
;{‘ ‘ 3, 8 simd,
: 3! 1 - BcOIef ’ (3.27)
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Similarly, differentiation of Equation 2.8 with respect to ¢ gives

oz
(z-zf) ( 1 - ;f)

J(z-zf)2 + rz

0al.%e 1
v oz c

1 3zf c:osef azf
"v® T T (‘ - ‘a?) g ‘
whence
azf L. 8 cosef
oz 1 - 8 cosf, (3.28)

Similarly differentiation of Equation 2.8 with respect to t gives
) 9z

£
1ol azf L1 (z-zf)(-—az-)
t c
J(z-zf)2 + r2

v o

_ azf coaef 9z

- l ——— o  eEE— —f— ]
v ot c at
whence
3zf ) v
ot 1< B cost, cosd, (3.29)

It follows froam Equation 3.24 that

I _ _ sind sin6, Beind,
3 © R(I+cosd) R (1+cosd,) ~ R, (I-Bcosd) (3.30)
Similarly
€ Rg(i-Peosd, (3.31) .
and .
a1 1_ 1, . 2% ) _1_ 1
"R i; 1-8 °°'§£ R R£Zi-§c005£5 (3.32)




-' ; On applying Equations 3.31 to Equation 3.20,

&
& H =- ) [ 8in 0 'mef - B.mef ] .
;.1 ¢~ @ RZI 089) R, (1+cosd)) Rf(l-ﬁcosef) (3.33)
3]
(0 Similarly, from Equation 3.18
A . == |t- 1 g
3 m | GTEV K (I-Bcoseff R (l-Bcosef)
;*
H
X 4me v |[R ~ R (1-Beosd)) ’
o (3.34)
¥ )
C and from Equation 3.19,
Y
\ E e-—J. | _sin® sinf, B sind,
-:. ™’ “Sne v oV R(1 +cosB) Rf(lﬂosef) Rf(l-Bco'efj (3.35)
Equations 3.16, 3.17, 3.33, 3.34, and 3.35 constitute the exact formal
solution for the fields generated by the charge separation process and the
39 accompanying current flow. The quantities Rf and §¢ may be found in terms of
i z¢ using Equations 2.7 and 3.22, while z¢ can be found as a function of t by
' inverting the time-distance quation (Equation 2.10) as discussed in Appendix
A. Yor numerical calculations it may be expedient to regard z¢ as the inde-
s pendent variable, and to compute the fields and the associated observation
_', time as separate exercises. This approach is illustrated in Section 5.
«.3 The above solution gives the fislds resolved in a cyclindrical coordinate '
» system, that is, they are resolved in the r, P -, and 2= directions. For
( completeness the solution will now be re-cast into components appropriate to a i
¥ spherical coordinate system, that is, in the coordinate directions R, 6 , and
®. The P -component (magnetic field) is the same in the two systems, while
the others transform in ways that are obvious from inspection of Figure 3.1.
Thus
’ E‘l = Bz cosd + Er siné
X (3.36)
"L' .
&5
. E, = - E_sind + E_ cosd
® : i (3.37)
o
%
M
- 11
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Figure 3.1

Relation of Electric Field-Components in Cylindrical and
Spherical Coordinate Systems
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Then the fields of the stationary charge, Equations 3.14 and 3.15, appear in
spherical components as

Hs.d

lme n
(3.38)
E..=0
98 (3.39)
Similarly, the fields of the moving charge become
I 1 - 82
lnn Aweov [ ZT-BcosE 5]“'
o] _s1a0 l:l.nef gl:l.nﬁ
RZI os9) Rf(l-l-cosﬁf R (l-h 55 sin @
(3.40)
E J | B
6m 4TME WV ZI-EcoJ )
sin 6 unef Bsinef
| R(1+cos®) R, (1+cosd,) = Rf(l-ico-ef) cos 8
s [ 8 2
- cos - l1-8 1in 6
lmeov R(1+cosd) th-Ecosefs s
+ -R (1+io 30) + n (1-§B ) .mef cos 8
| By 80, £ cost, | (3.41)

13
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i 4. LIMITING FORMS FOR LARGE DISTANCES AND EARLY TIMES
v If R 1s large and 2¢ {3 small, a situation which may occur when the
Vot current-front has not yet moved far from the origin, some simplified limiting
. forms can be obtained. Thus
2 :
gy + R ’
2 R (4.1)
2 -
3 6.+ 6
;3 £ (4.2)
S
L)
. and from Equation 3.24,
r
) . J 8 sinf
Y, By " Zm® " T - 8 cosd (4.3)
;‘%* .
{ and by Equation 3.27,
&0
S Jz
i ° . siné
59 Em "% T - B cos® (4.4)
"_h'
Using Equation 3.25, -

J . cosd - B

- En” Weoci' 1 -8 cosd (4.5)

3

o

. In spherical coordinates, the radial component simplifies immediately:

ke J Iz,

- ) 4 -+ Y YTy

-d':‘ Ra ﬂeocl I‘IIR (4.6)

S

(

X5 while

3

- J 8 sind

‘_ Bom * 77 oK ' T—F comd " ZoB

5, om lmeocn cosd o ¢ (4.7) -
o .

& Also at early times s
4

:s t -+ R . :

T [ . (“08)

s 14
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and by Equation 3.30,

3
Egg * = e &

(4.9)

so that

Ep = Egg + Epp * 0

Since BBS = 0 (see Equation 3.31),

ze-ze - 2 H

o o ¢ (4.10)

To summarize these limiting forms, valid for large distances and early times,
it is concluded that (a) the radial or R-field of the moving charge cancels
the field of the stationary charge giving no net radial field, (b) the tangen-
tial electric field and the azimuthal magnetic field are related to each other
as in a plane wave, or as in the far field of an oscillating infinitesimal
dipole, (c) the directional pattern differs from that of an infinitesimal
dipole by the factor

1 .
Y*T1T<-28 coseé (4.11)

This factor can produce a very large effect if 8 1is close to unity, but the
effect is small 1f S is small. In any case Y=l at O = 90°, Figure 4.l
illustrates the behaviour of the directional pattern

F(0,8) = —ﬁl E .1::. (4.12)

for two valuss of B.

(d) The radiation fields are maximum in the cone of directions for which
1

@ =cos B (4.13)
and
P o —
-8 (4.14)
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(e) Like the stepfunction of the source current itself, these limiting forms
for large distances have sudden onsets, and constant amplitudes.

The radiated pover may be found by considering the electromagnetic energy
density between two expanding wavefronts at a large distance from the origin.
Figure 4.2 illustrates the positions of two spherical wavefronts at time t.
The outer wavefront started from the origin O at time zero, and hence is at a
radius R = ct. The inner wavefront was radiated from point A, at a time

At = OA 14ter, and hence appears at radius
v

R

A " c(t-At) = R - cAt

(4.15)

It may be seen from Figure 4.2 that the width Aof the space between the
wavefronts in the §-direction is given approximately by

AW TR -R, -~ OA cos®
R RA cos | (4.16)

anq in the limit,

dW = cdt - vdt cos@ = (1-Bcosf)cdt (4.17)

Now 1f the volume density of electromagnetic energy is taken to be

1 2,1 -3
e =3 tol + 3 uolz joules » (6.18)

(See Stratton,2 p, 111, Equation (32), and p. 124, Equation (34)) it follows
from Equation 4.10 that

1 2, 1 2 2
8 = (T €2oF 7 M Hy = U, (4.19)
2
- J ¥ . 82 -mze
161r!; (l-sscose)E (4.20)

by Equation 4.3,

17
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Crossection of the Space Between Two Neighboring Wavefronts
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‘"} The energy du between the wavefrontsvis found by integration using an
1 elemental volume illustrated in Figure 4.3. The element is a ring of radius
Rsin O, and a crossectional area R df dW, and volume
¥ 2 i
dv = R* 8inf d6 4w
(.
3 ) - ckz sin® - (1-Bcos6)dt db (4.21)
3 .
;3, Then
v
! du = f 8 dv
o volume
.
38
i Pucde
@ «—20— BB .
16 (4.22)
2
o where
i . m
) B(B) = s’fﬁ-ae
5 1 - B cosf (4.23)
R [
1 +1
? - g2 1-2-52 da
“ A l- (4.264)
3 This integral is readily evaluated using standard forms, (for example Dwight3
s Items 90.1 and 92.1) and after some algebraic reduction it is found that
b B(8) = 2 - 5 -B)ta } 2B
¥ (4.25)
e
)
9 The function B(8) is illustrated in l?iguu 4,4: 1t varies from O to 2 and

varies from O to 1.

i

Since the energy du was radiated in time dt, the radiated power was

w2 z n(:) .
3 16m (4.26)

o P et

3 owighe, R.5., “Tables of Iategrals and Other Machems
i Meckilliem, 1945. il cleal Daca’,
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Figure 4.3

Element of Integration
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Figure 4.4

Graph of the Function B(B)
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The power radiated is evidently equivalent to the power that would be expended
if the current J were flowing in a "radiation resistance”

% 16w (4.27)

Since B has the maximum value of 2, the maximum value of R is 4.7746 ohms.

The preceding results for a step—function current transient can be used
to calculate the fields from an arbitrary current-transient propagating along
a straight line without change of amplitude of shape. Such a transient can be
considered to consist of a linear superposition of elemental step-functions,
and it follows that the early-time and large-distance radiation waveforms
resemble the waveform of the current when displayed on appropriate amplitude
and time scales. For example, a current impulse in the form of a delta-
function can be modelled by a positive step-function followed, after a
short delay At, by an equal but negative current-step. The latter in effect
cancels the former after a current-impulse At J = q is delivered. The
duration of the fields is also At, and the field impulses follow immediately
from Equation 4.7:

- - q L) B_i'rina . -1
f‘e- de zo ./-H¢dt lmeock 1 ~ B cos® volt - sec * m (4.28)

S. NUMERICAL EXAMPLE

In certain practical cases it may not suffice to consider only early
times, or only fields varying as 1/R, as was done in Section 4, 1In those
cases it may be expedient to resort to mumerical work with machine computa—-
tion.hIn this Section fields are calculated for the following mumerical
exanp

Relmn
J =1 amp
B = 0.99
cos® = 0.99 | . .
(0 = 8.1096°)
z = cos® = 0.99

r = gind = 0.141067
(5.1)
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Then by Equation 2.7,

+zr

R, = {1 - 1.98z, + 22

£

and by Equation 3.22,

0.99 - z¢
cosf,_ =

f kf

Also, by Equation 3.23,

oing. = 0:14106
£ TR,

From Equation 2.8,

"%(Z'Bf'”f)

(5.2)

(5.3)

(5.4)

(5.5)

where ¢ = 3x108 5/g3, The first fields arrive at time t = 3.33333 ns.

Equation 3.33 reduces to

ol 0.28071 1

Rf (1+cos £

By

While by Equation 3.21

En " 380.7998¢ v/m

If tye is time in nanoseconds, Equation 3.17 gives

Brs - - l.2678tn. v/m

E - 380.7991

p = 1.2678tn.

By Equation 3.16, similarly,

E,"" 8.9100tn. v/m

23

1-fBcos £

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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Finally, by Equation 3.34

.. 0.20101 |
Ezm = = 30.3030 + ¥, - 0.9601 + 0,99z, ° (5.11)

and

z z8 zm (5.12)

By assuming various values of zf, the corresponding values of t, Rf, and cos
were found. With these, values of the fields were calculated, and the results
are sketched in Figures 5.1, 5.2, and 5.3. It may be noted that the shoulders
of the curves are definitely rounded, whereas it was seen in the previous
Section that the early-time far-fields have abrupt (discontinuous) onsets.

6; CURRENT GENERATION AND ABSORPTION

In the previous Sections the travelling current-front was assumed to
continue along a line indefinitely, but in some cases of interest the model
should provide for stopping, and even reversing, the current at an arbitrary
point. For example, a current wave on a conductor of finite length must stop
or reverse when the end is reached. These cases can be treated by linear
superposition of solutions of the basic model slresdy discussed. For example,
the advance of the current front can in effect be stopped at a point by start-
ing a new current at that point. The current travels in the same direction
but has opposite sign so as to cancel the original current. Similarly, a
current reversal can be modelled by stopping the original current as just
described, and generating a third current having the same sign as the original
one, but travelling in the reverse direction.

-The case of stopping the current will be considered in more detail. It
will be assumed as before that the current step is generated at the origin of
coordinates but now when the front reaches the point z = L, see Figure 6.1,
the new current begins. This (negative) current leaves an increasing positive
charge at z = L, and this is of course equivalent to the positive charge that
would accumulate when the original current is stopped. The original current
front reaches the point z = L at time L/v, and the effects of this arrival
reach the obsarver at time

L ll-
(6.1)

where
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Version of Figure 2.1 for the Case when the Upward-Advancing
Current-Front is Absorbed at z=L
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Prior to that instant the fields at the observer are exactly the same as in
the previous case. After that instant the new fields must be added. The lat-
ter can be calculated using the previous formulas, except that the origin of
coordinates for the new fields is at z = L, and not at z = 0

Whereas the fields are readily calculated, formally combining the various
expressions is rather cumbersome except in the limiting case when R and Ry are
large. This special case is discussed in Section 7.

7. LIMITING FORMS WITH CURRENT ABSORPTION

Figure 7-1(a) is an amplitude—~time representation of the radiation-field
waveform at a great distance, caused by the generation and absorption of a
positive current-step. The field lasts for a time At; given by Equation 7.4.
Figure 7-1(b) illustrates the radiation waveform of a negative current step of
the same amplitude, but delayed a short time At from the positive step.
Figure 7-1(c) illustrates the linear combination of the two previous wave-
forms, and hence represents the radiation waveform of & current impulse. It is
seen that the radiation waveforam consists of two impulses—a proapt impulse,
followed by a delayed impulse of opposite sign. Since any arbitrary current
waveform can be considered to be made up of a sequence of current impulses of
suitable amplitudes, the corresponding radiation waveform is followed by a
similar but inverted and delayed waveform, beginning after the time Atp,

Thus if Figure 7-2(a) represents the waveform from generating the current,
then Figure 7-2(c) represents the composite radiation waveform.

The radiation field due to the generation of the arbitrary curremt I (t)
is proportional to I(t- 1) » while the "absorption field"™ is proportional to
: c

R
-I(t- i AQL)
Thus the co-poc:l.éc field is proportional to

R
I(t- %’ - I(e- 3 -4ty)

LM (7.1)
3, 8ty -
and hence to
dI(e- 5)
L. e
v at (7.2)

when L and v/c are small. This proportionality of the radiation field to
length times rater~of-change of current is a well known result with convention-
al infinitesimal dipole radiators.
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Appendix A:

Inversion of the Time-Distance Equation

On writing the time-distance relation, Equation 2.8, as !

vt -z, = B{(z-zf)2 + 1'2 f
(A.1)
wvith 8= v/c, squaring both sides gives
vztz - thzf + zi = Bz(zz-Zzzf+z§+r2)
(A.2)
This when re-arranged reads
(1-8%22 - 202, + =0 ,
. (A.3)
where
2
Bwvyt -
ve - Bz, (A.4)
2.2 22 2.2
svt - -
Q Bz" -8 (A.5)
There are two solutions to the quadratic Equation A-3, namely )
2 2
t - -
'f . 4 P 1-8 (A.6) :
1=-8 '

To select the physically significant root, it is noted that with t = R/c, the
quantity Q = 0. For equation A-6 to give the correct value zf = 0 for that
case, it is evidently necessary to choose the negative sign.
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